تفاده از مکانیکهای آماری که به شبیه سازی میکروسکوپیک ربط دارد، شایع است. مکانیکهای آماری چارچوبی قوی از بیانات ریاضی را ارائه میکند که به توزیع و حرکت اتمها و مولکولها ربط دارد.
یک شبیهسازی دینامیک مولکولی در هر گام زمانی که به جلو میرود برای تعداد N ذره N6 مقدار برای مختصات و اندازه حرکت ذرات تولید میکند. یک شبیهسازی، هزارها و گاهی میلیون‌ها گام زمانی به جلو میرود. بنابراین با تعداد بسیار زیادی عدد سروکار داریم. یک راه کسب اطلاعات و استفاده از آنها مفهوم “مسیر فضای فاز”19 است. وظیفه اصلی شبیه‌سازی دینامیک مولکولی تولید مسیرهای فضای فاز ذرات با استفاده از معادلات حرکت است.
1-13- معادلات حرکت
در تفسیر نیوتنی از دینامیک، حرکت انتقالی یک ذره کروی توسط یک نیروی fi صورت میگیرد که از طرف عامل خارجی اعمال میشود. حرکت و نیروی اعمال شده با قانون دوم نیوتن به هم مرتبط میشوند.

که m جرم ذره است و فرض میشود که مستقل از زمان، مکان و سرعت است. شتاب با عبارت زیر داده میشود
ri مختصات مرکز جرم ذره i در سیستم مختصات آزمایشگاه است. قانون دوم نیوتن (معادله 1-1) برای N مولکول کروی، N3 معادله حرکت شامل معادلات دیفرانسیل مرتبه دوم معمولی ایجاد میکند. اگر هیچ نیروی خارجی بر مولکول اثر نکند در این صورت:

این قانون اول نیوتن است یعنی ملکولی که ساکن بوده ساکن می ماند و ملکولی که با سرعت ثابت حرکت می کند با همان سرعت به حرکت خود ادامه می دهد. با استفاده از قانون دوم نیوتن (1-1) میتوان قانون سوم را بدست آورد.
یک سیستم منزوی شامل مولکولهای 1و2 را در نظر بگیرید. بنابر تعریف به یک سیستم منزوی هیچ نیروی خارجی اعمال نمی‌شود و برآیند نیروها صفر است. به طوری که

پس نیروی وارد بر مولکول 1 توسط مولکول 2 یا نیروی وارد بر 2 توسط 1 خنثی میشود.

بنابراین . این قانون سوم نیوتن است. براساس این مفاهیم انرژی جنبشی برابر با کار لازم جهت حرکت مولکولi از حالت سکون به سرعت ri تعریف میشود:

هدف اصلی MD تولید مسیر کلاسیکی مولکولها است. در یک سیستم N مولکولی هر مولکول با ذرات دیگر برهمکنش میکند. و مختصات آن براساس قانون دوم نیوتن تغییر می کند. بنابراین موقعیت یک مولکول را میتوان با یک بردار مختصات وابسته به زمان ri(t) نشان داد. همچنانکه یک مولکول مسیر خود را طی میکند، اندازه حرکت آن بدلیل برهمکنش با سایر مولکولها تغییر میکند و بنابراین اندازه حرکت خطی آن را میتوان با یک بردار اندازه حرکت خطی وابسته به زمان pi(t) نشان داد. فرض کنید در یک لحظه مختصات و اندازه حرکت خطی N مولکول را در یک “ابر فضا”20 N6 بعدی رسم کنیم. این فضا شامل دو قسمت است: قسمت اول یک “فضای پیکربندی” N3 بعدی که محورهای مختصات آن مولفههای بردار موقعیت مولکولها یعنی ri(t) است و قسمت دیگر یک “فضای اندازه حرکت خطی” N3 بعدی دیگری که محورهای آن مولفههای اندازه حرکت خطی مولکولها یعنی pi(t) است. در یک لحظه موقعیتها و اندازه حرکتهای خطی کل سیستم N6 را می توان با یک نقطه در “ابر فضا” نشان داد. همچنان که موقعیتها و اندازه حرکتها نسبت به زمان تغییر می‌کنند این نقطه نیز جابهجا می‌شود و یک مسیر در فضای فاز ایجاد میکند. هدف اصلی MD محاسبه “مسیر فضای فاز” است. این مسیر با حل عددی معادله دوم نیوتن یا همارز آن معادله حرکت هامیلتونی بدست میآید.
1-14- محاسبه خواص ترمودینامیکی ساده
با استفاده ازشبیهسازیهای رایانهای میتوان خواص ترمودینامیکی سیستمی را که هیچ داده تجربی برای آن موجود نیست و یا بهدستآوردن اطلاعات تجربی آن دشوار یا ناممکن است، پیش بینی کرد. در این بخش به برخی از خواصی که به طور معمول در شبیهسازیهای رایانهای محاسبه میشوند تاکید خواهیم داشت وروش به دستآوردن آنها را شرح میدهیم. این خواص شامل انرژی پتانسیل، انرژی جنبشی، انرژی کل و ظرفیت گرمایی می باشد که به اختصار توضیح داده و روابط مربوط به آن ها آورده شده است.
1-14-1- انرژی پتانسیل
در اکثر شبیهسازیها تابع انرژی پتانسیل بین مولکولی به صورت جمع برهمکنشهای جفتی در نظر گرفته میشود. این فرض، جمع‌پذیری جفتی21 نامیده می‌شود بنابراین:

در این سایت فقط تکه هایی از این مطلب با شماره بندی انتهای صفحه درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

اینجا کلیک کنید

U(rij) تابع انرژی پتانسیل جفتی است که شکل آن معلوم است و rij بردار موقعیت نسبی دو مولکول i و j است. نیروی وارد بر مولکولi با عبارت زیر به پتانسیل بین مولکولی مرتبط میشود:

که نشان دهنده عملگر گرادیان، Fi نیروی وارد به مولکول i وri بردار مکان است. محاسبه انرژی پتانسیل برای آزمودن بقای انرژی که یکی از معیارهای مهم در کیفیت یک شبیهسازی است، ضروری است.
1-14-2- انرژی جنبشی
انرژی جنبشی لحظهای به سرعت ذرهها مرتبط است که با میانگین گیری لحظه ای، مقدار آن به دست می آید.
1-14-3- انرژی کل
انرژی کل در حین انجام شبیهسازی به طور پیوسته بین دو شکل انرژی پتانسیل و انرژی جنبشی در حال تبدیل است و درنتیجه U و K افتوخیز میکنند، حال آنکه مجموع آنها همواره ثابت باقی میماند.
1-14-4- ظرفیت گرمایی
ظرفیت گرمایی به دو روش محاسبه میشود: یکی مشتقگیری از آنتالپی سیستم نسبت به دما در فشار ثابت و دیگری با استفاده از نظریه افتوخیز. هر دو روش در کارهای گذشته اندازهگیری شدهاند [21.[
Cp = () P

H=E+PV

1-15- میدان‌های نیرو22
در دینامیک مولکولی مجموعه توابع توصیفکننده میدان پتانسیل وارد بر ذرات را میدانهای نیرو مینامیم. به دلیل آنکه در شبیهسازیهای دینامیک مولکولی نیازمند دانستن نیروی وارد بر هر ذره برای تعیین مختصات آن در زمان بعد میباشیم دانستن میدانهای پتانسیل وارد بر ذرات و محاسبه نیرو به عنوان مشتق مکانی تابع پتانسیل امری ضروری مینماید. توابع پتانسیل مورد استفاده در میدان‌های نیرو به سه گروه تقسیم می‌شوند که در زیر به اختصار آن ها را توضیح می دهیم.
1-15-1- برهمکنش‌های غیرپیوندی23